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ABSTRACT

A general analytic criterion for radiative instability in the envelope of a nonexplosive star is derived, based
on a generalization of the Eddington limit for the star’s luminosity, an expression for the stationary mass-loss
acceleration, and an assumed universality of the critical mean density of the envelope. The derived criterion has
been formulated as the minimum rate of mass loss needed to achieve a super-Eddington state. Expressed as a
simple function of luminosity and effective temperature, it is applied to luminous blue variables (LBVs), Wolf-
Rayet stars, and ordinary B-type supergiants. Assuming that the brightest LBVs as well as most of the Wolf-
Rayet stars are post–main-sequence objects, these objects must have radiatively unstable envelopes.

Subject headings: stars: interiors — stars: mass loss — stars: variables: other — stars: Wolf-Rayet — supergiants

1. INTRODUCTION

Radiative instability in a nonexplosive star is usually asso-
ciated with its thin atmospheric layers (e.g., de Jager 1980, chap.
1; de Jager et al. 2001). This instability develops when the ra-
diation pressure force exceeds the inward pull of gravity, and
therefore it tends to occur most easily in the loosely bound
atmospheric layers of very luminous supergiants, either hot or
cool. There has long been a suspicion that it can also occur
deeper inside the envelope (Stothers & Chin 1983), but a work-
able mechanism for it was unavailable until a “bump” in the
iron opacity curve at a temperature of∼ K showed51.5# 10
up in improved opacity calculations made by Iglesias, Rogers,
& Wilson (1987). Using purely radiative envelope models, Kato
& Iben (1992) demonstrated that this opacity feature could pos-
sibly destabilize Wolf-Rayet stars and drive their high rates of
mass loss. A counterargument, however, was that turbulent con-
vection might be able to transport the excess luminous flux aris-
ing from the opacity bump and so prevent radiative instability
from developing anywhere in the interior (Schaerer 1996).

More recently, simple convective mixing-length calculations
made very close to the limit of radiative stability have suggested
that turbulent convection, even when supersonic, cannot carry
all of the excess flux (Stothers 2002). This conclusion was
found to be true also for the brightest and hottest luminous
blue variables (LBVs or S Doradus variables) if they, like the
Wolf-Rayet stars, are post–main-sequence objects. These cal-
culations, however, were performed only for a small number
of stellar envelope models, clustered in a very narrow range
of effective temperature, –30,000 K, in which theT p 20,000e

models were simultaneously crossing the thresholds of radiative
instability and ionization-induced dynamical instability. Since
the primary focus of that work was dynamical instability, no
adequate survey of radiative instability in the envelope has yet
been conducted.

In the course of doing a more extensive model survey, a
simple criterion for radiative instability has been serendipi-
tously discovered. It is based on Eddington’s (1921) limit on
the luminosity, along with additional stellar envelope physics
that permits an analytic formulation of the criterion in terms
of luminosity, effective temperature, and mass-loss rate. Thus,
it can be applied to a wide range of luminous stars.

2. GENERALIZED RADIATIVE INSTABILITY

The envelope of a post–main-sequence star with a very high
ratio of luminosity to mass ( ) contains a negligible amountL/M
of matter lying above the iron convection zone and, in fact, is
so tenuous that above this zone, radiative equilibrium applies
to a very good approximation. Ignoring turbulent pressure and
axial rotation as being unimportant, the forces acting arise pri-
marily from gravity, gas and radiation pressure, and mass loss
(Stothers 1999, 2002, 2003). If the ratio of gas pressure to the
sum of gas and radiation pressure is denoted byb, then at radial
distancer,

1 � b p L/L , (1)E

where the generalized Eddington luminosity is defined by

4pcGM(1 � w)
L p . (2)E AkS

Here represents a running mean opacity, given byAkS

r
1 1 1dPradp dr, (3)�AkS P k drrad R

andw is a (constant) ratio of mass-loss acceleration to gravi-
tational acceleration, taken to be

2 3h dM R
w p . (4)( )dM dt GM

In this expression forw, is the mass of the moving stellardM
envelope andh is the ratio of the envelope’s dynamical re-
sponse time to its free-fall time. Numerical hydrodynamical
models of stellar envelopes with a very large ratio suggestL/M

, to within a factor of 2 (Stothers 2002).h p 10
Physically, it is impossible that . Therefore, equa-b ! 0

tion (1) imposes an upper limit on the luminosity,LE. Strictly
speaking,LE is a nonlocal function of the radial distancer.
However, in the tenuous envelope of an LBV, the basic structure
is relatively simple. Withb very small everywhere andk nearly
constant (close to the electron-scattering limit), varies onlyL/LE

a little through the outer envelope. Nevertheless, radiative sta-
bility vanishes first in the slightly nonadiabatic upper layers of
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Fig. 1.—Mass-loss rate, normalized to its maximum value, as a function of
the dimensionless parameterw.

Fig. 2.—Mass-loss rate ( ) vs. effective temperature (K). Theoretical�1M yr,

thresholds of radiative instability in the envelope are plotted in the case of
two values of ; stellar envelopes lying above the theoretical lineslog (L /L ),

are predicted to be radiatively unstable. Asterisks denote well-observed LBVs
and LBV candidates at quiescence; observed values of are indicatedlog (L /L ),

in parentheses. The approximate domains of the cooler WN stars and of the
ordinary B0–B2 Ia supergiants are also plotted.

the iron convection zone; therefore, for , we adopt the cu-dM
mulative mass of the overlying layers.

3. MASS LOSS AT THE EDDINGTON LIMIT

The problem now is to compute, in an approximate but general
way, the rate of mass loss when the star lies precisely at the
Eddington limit . The necessary equations consist ofL p LE

equations (2) and (4) with . Combining these3dM p (4/3)pR ArS
equations with the Stefan-Boltzmann law, 2 4L p 4pR (ac/4)T ,e

we get

7/2 5/4 3/4 1/22 p(GM) ArS(1 � w) w˙FMF p . (5)3/4 33h(aAkS) Te

Observe that as a function ofw is zero at both˙FMF w p
and . The function rises to a single maximum at0 w p 1

. A plot of , normalized to its maximum value,˙w p 2/5 FMF
is displayed in Figure 1. Over the whole range ofw (except
near the two endpoints), is roughly constant. Therefore,˙FMF
according to equation (2), varies only slightly with lu-˙FMF
minosity at a given stellar mass. It must be emphasized that

represents theminimum rate of mass loss that is necessary˙FMF
to bring the star into a state of radiative instability.

To use equation (5) more widely, it would be of great ad-
vantage if and were approximately constant quantities.AkS ArS
A large number of outer envelope models close to the Ed-
dington limit, computed both in our earlier study and over a
much expanded range of effective temperature here, show

g�1 (to within a factor of 1.2) and2AkS p 0.35 cm ArS p
(to within a factor of 2). The theoretical�11 �32 # 10 g cm

uncertainty in arising from possible errors generated by˙FMF
our adoption of mean values of , , andh probably doesAkS ArS
not exceed a factor of∼3, which is about the same as the
estimated error of the observed mass-loss rates for LBVs (Vink
& de Koter 2002) and for their close relatives, the hydrogen-
poor Wolf-Rayet stars (Hamann & Koesterke 2000).

The (M, L)-relation for LBV models at both the start and the

end of central helium burning can now be used to evaluate the
threshold value of for various effective temperatures. Since˙FMF
the physically valid range of luminosities for each stellar mass
(or conversely, the physically valid range of stellar masses for
each luminosity) is so small, ought to be tightly constrained˙FMF
in the mass coordinate for any luminosity. In view of equa-
tion (5) and Figure 1, depends, therefore, primarily on˙FMF
effective temperature, , as exhibited in Figure 2. In-�3˙FMF ∝ Te

spection shows that the approximate luminosity dependence is
. Therefore,˙FMF ∝ L

˙log FMF ≈ log (L/L ) � 3 log T � 2.5. (6), e

If a star lies above the line , the threshold rate ofL p LE

mass loss is being exceeded and the outer envelope must be
radiatively unstable. In that case, an amount of mass greater
than will be ejected during the envelope’s dynamical re-dM
sponse time. Supersonic turbulence in the iron convection zone
may power the rapid mass loss.

4. COMPARISON WITH OBSERVATIONS

On Figure 2 are plotted the empirical mass-loss rates and
effective temperatures for eight well-observed LBVs at qui-
escence tabulated previously (Stothers 2002); the original data
come mostly from Leitherer (1997) and van Genderen (2001)
but do not include the questionable mass-loss rate for R71, as
discussed in our earlier paper. Each LBV in the figure is tagged
with its value.log (L/L ),

Clearly, the three coolest and faintest LBVs have mass-loss
rates that are too small to produce radiative instability in the
envelope, but the three hottest and brightest objects are con-
spicuously unstable. These conclusions seem now to be robust
against any reasonable uncertainties about the stars’ effective
temperatures and luminosities. In order to negate these con-
clusions, either the empirical or the theoretical mass-loss rates
would have to be in error by 1–2 orders of magnitude.

General locations on Figure 2 are indicated also for the cool-
est Wolf-Rayet stars (Hamann & Koesterke 1998, 2000; Nugis,
Crowther, & Willis 1998; Nugis & Lamers 2000) and for the
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brightest ordinary early B supergiants (Leitherer, Chapman, &
Koribalski 1995; Scuderi et al. 1998; Kudritzki et al. 1999;
Lamers et al. 1999; Benaglia, Cappa, & Koribalski 2001). With-
out much doubt, the envelopes of these stars are radiatively
unstable and stable, respectively, barring errors of 1–2 orders
of magnitude in the empirical or theoretical mass-loss rates.

Our conclusions about the radiative stability of the coolest
LBVs and of the ordinary B-type supergiants are actually
stronger than indicated. Any comparison of the observed and
critical mass-loss rates should in principle be the same as com-
paring w in an actual stellar envelope with thew that would
be needed to achieve in that envelope. Accordingly,L p LE

the values ofh and of appearing in equation (4) ought todM
be those prevailing in the actual envelope, not in some extreme
case of the envelope with . Our use of such a marginallyL p LE

unstable envelope has been dictated here by a desire for uni-
versality, simplicity, and accuracy near the limit . Be-L p LE

cause and if , our pre-�11 �3h ! 10 ArS 1 2 # 10 g cm L ! LE

dicted critical values of for stars lying below the line˙FMF
in Figure 2 are somewhat too small.L p LE

If the brightest LBVs actually are rapidly rotating stars near
the end of the main-sequence phase, as some authors believe
(e.g., Maeder & Meynet 2000; Lamers et al. 2001), a rotational
term should be included in equation (2). In that case, the value
of needed to achieve radiative instability would be low-˙FMF
ered, and the instability could arise primarily from the fast
rotation.

Lastly, we note that Figure 2 applies only to radiative in-
stability inside the stellar envelope. Our results do not refer to

the stellar atmosphere, where radiative instability can be
achieved through strongly turbulent atmospheric motions in the
case of luminous supergiants hotter than 8000 K (de Jager et
al. 2001).

5. CONCLUSION

The traditional method to test for radiative instability in the
stellar interior is to computeLE and then to compare it with
L, or, equivalently, to solve the equation for the criticalL p LE

massM in order to compare it with the observed (or theoret-
ically predicted) mass. In such a conventional test, the mass-
loss acceleration is traditionally ignored. Quite apart from the
fact that the test thereby becomes inaccurate, the demands
placed on an accurate knowledge of bothL and M make the
conventional test unreliable in any case.

When the mass-loss acceleration is taken into account, it yields
an additional degree of freedom, so that one can in practice
compare the observed mass-loss rate of a star with the value
required for radiative instability of its envelope. Only rough
information about the star’s mass or luminosity need be known.

It has been shown here that a very simple formula links
, L, and at the threshold of radiative instability. Applied˙FMF Te

to observed stars, the criterion predicts that the brightest LBVs
as well as the coolest WN stars are radiatively unstable, on the
assumption that these objects are evolving in a post–main-
sequence phase. Because other massive, evolved Wolf-Rayet
stars also possess high values of ,L, and , it is predicted˙FMF Te

that they, too, are radiatively unstable.
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